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1. Introduction

One of the most exciting recent developments in string theory has been the great progress

made in moduli stabilisation [1, 2]. There are now well-established techniques to give

masses to the moduli that appear ubiquitously in string compactifications. The process

of moduli stabilisation represents ‘step zero’ towards string phenomenology, as the moduli

vevs determine such basic quantities as the string scale and the gauge coupling constants.

Given moduli potentials, an obvious application is to inflation. While the moduli sec-

tor has only indirect effects on Standard Model matter, the dynamics of light scalar fields

is the principal theme of inflation. Inflation is the dominant paradigm for structure forma-

tion in the early universe and observations can now provide precision tests of inflationary

models [3].

In string theory there are several candidates for the inflaton field, which can be clas-

sified according to their origin in either the open or closed string sector [4, 5]. The most

common open string inflaton is a brane/antibrane separation [6 – 8], whereas closed string

inflatons typically correspond to geometric moduli [9]. There has been much recent effort

devoted to inflationary model building, particularly since the appearance of the KKLT

scenario of moduli stabilisation [2]. For recent discussions, [9 – 12] may be consulted.

A standard problem bedevilling both brane and modular inflation - and indeed most

supergravity inflation scenarios - is the η problem. This states that for F-term inflation the

slow-roll η parameter is O(1) unless a finely tuned cancellation occurs. The η problem is

manifest for F-term modular inflation. In brane inflation it is not manifest, but reappears

once this is embedded into a moduli stabilisation scenario [10].

In this note we will present a simple inflationary scenario within the framework of

the moduli stabilisation mechanism of [13, 14]. The inflaton is one of the Kähler moduli
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and inflation proceeds by reducing the F-term energy. The η problem is evaded by the

pseudo-no scale property of the Kähler potential. The structure of the potential is such

that inflation is obtained naturally and almost inevitably, without either fine tuning or a

need to introduce large flux or brane numbers. This mechanism in principle applies to a

very large class of Calabi-Yau compactifications that will be specified below.

2. Almost flat directions

2.1 General idea

Slow-roll inflation requires the presence of almost flat directions in the scalar potential. A

natural source of such a flat direction would be a field only appearing exponentially in the

potential. Denoting this field by τ , an appropriate (and textbook [15]) potential would be

Vinf = V0

(

1 − Ae−τ + · · ·
)

, (2.1)

where the dots represent higher exponents.

In string theory there are many moduli whose stabilisation requires nonperturbative

effects. Examples are the Kähler moduli in IIB flux compactifications and both dilaton

and Kähler moduli in heterotic Calabi-Yau compactifications. We regard all such fields

as candidate inflatons, but shall focus on the Kähler moduli (Ti) of type-IIB flux com-

pactifications. These only appear nonperturbatively in the superpotential, which takes the

form

W =

∫

G3 ∧ Ω +
∑

i

Aie
−aiTi , (2.2)

where Ti = τi + ici with τi the 4-cycle volume and ci the axionic component. The Ai

represent threshold corrections and are independent of the Kähler moduli.

Of course, it is well known that N = 1 F-term inflation suffers from an η problem.

Both the Kähler potential and superpotential enter into the scalar potential, and for generic

potentials η ∼ O(1). However, the key word here is ‘generic’, and the Kähler potentials

arising from string theory are (by definition) not generic. A common way these potentials

fail to be generic is by being no-scale, corresponding to

Kij̄∂iK∂j̄K = 3. (2.3)

For a constant superpotential W = W0, a no-scale scalar potential vanishes:

VF = eK
(

Kij̄DiWDj̄W̄ − 3|W |2
)

= 0, (2.4)

where DiW = ∂iW + (∂iK)W , with all directions being exactly flat. In type-IIB, the

tree-level Kähler potential for the size moduli takes the no-scale form

K = −2 ln(V), (2.5)

where V is the internal volume. Suppose we now add nonperturbative modular dependence

into the superpotential as in (2.2). The scalar potential becomes

VF = eKKij̄
[

aiAiajĀje
−aiTi−aj T̄j − ((∂iK)WajĀje

−aj T̄j + c.c.)
]

. (2.6)
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Ti only appear nonperturbatively along exponentially flat directions and it is natural to

ask whether this flatness can drive inflation.

While the potential (2.6) is exponentially flat, it also appears exponentially small.

However, this is only true so long as all Ti fields are large. In the presence of several

Kähler moduli the variation of V along the Ti direction is in general uncorrelated with the

magnitude of V - we note this cannot happen in a one-modulus model.

There are also extra corrections to the potential, arising both from the breaking of

no-scale behaviour by Kähler corrections and from the uplift terms needed to fine-tune

the cosmological constant. The latter have several possible sources [2, 16, 17] and scale

inversely with the volume

Vuplift ∼
1

Vα
, (2.7)

where 4
3 ≤ α ≤ 2. Notice that the uplift encodes its modular dependence through the

overall volume, rather than depending explicitly on the moduli. Thus at constant volume

the Tn direction is extremely flat for large values of Tn.

2.2 Embedding in IIB flux compactifications

While this is promising, inflation in string theory cannot be isolated from moduli stabilisa-

tion, as the methods used to stabilise the moduli can generate unacceptably large masses

for the inflaton. We now embed the above in reasonably explicit IIB flux compactifications1

and in particular in the moduli stabilisation mechanism of [13, 14]. (For other recent work

on perturbative corrections in IIB flux compactifications see [18 – 22]).

For multi-modulus Calabi-Yaus, evaluating the scalar potential requires expressing the

overall volume in terms of the 4-cycle volumes, which we shall denote by τi = Re(Ti). For

illustration, we shall take a simplified form for the Calabi-Yau volume,

V = α

(

τ
3/2
1 −

n
∑

i=2

λiτ
3/2
i

)

=
α

2
√

2

[

(T1 + T̄1)
3/2 −

n
∑

i=1

λi(Ti + T̄i)
3/2

]

. (2.8)

τ1 controls the overall volume and τ2, . . . , τn are blow-ups whose only non-vanishing triple

intersections are with themselves. α and λi are positive constants depending on the partic-

ular model. The minus signs are necessary as ∂2V
∂Ti∂Tj

must have signature (1, h1,1 − 1) [23].

We stabilise the dilaton and complex structure moduli with fluxes and take the Kähler

moduli superpotential to be2

W = W0 +
n

∑

i=2

Aie
−aiTi , (2.9)

1The lack of explicitness lies principally in the difficulty of knowing whether and what nonperturbative

superpotentials will be generated on a particular Calabi-Yau.
2More generally we could take W = W0 +

Pn
i=2

Aie
−aijTj , which would alter the condition (2.18) in

a model-dependent fashion. As long as the modified form of (2.18) can be satisfied, the results for the

inflationary parameters are unaffected. In general we expect this to be possible, although we note that

there do exist models, such as the F11 model of [24], for which this cannot be achieved.
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where ai = 2π
gsN . The Kähler potential is

K = Kcs − 2 ln

[

α

(

τ
3/2
1 −

n
∑

i=2

λiτ
3/2
i

)

+
ξ

2

]

, (2.10)

where ξ = − ζ(3)χ(M)
2(2π)3 . We have included the α′ corrections of [18]. The dilaton has been

fixed and so we can define the moduli using either string or Einstein-frame volumes; we use

the former. If the latter, we must replace ai → aigs and ξ → ξg
−3/2
s in (2.9) and (2.10) - the

physics is of course the same. As we work in the moduli stabilisaton framework of [13, 14]

we anticipate that at the minimum we will have τ1 À τi and V À 1. The resulting scalar

potential is

V = eK
[

Gij̄∂iW∂j̄W̄ + Gij̄
(

(∂iK)W )∂j̄W̄ + c.c.
)

]

+
3ξW 2

0

4V3
. (2.11)

We need ξ > 0 and so require h2,1 > h1,1. For the above Kähler potential, we have

Gij̄ ∼ 8V√τi

3αλi
δij + O(τiτj). (2.12)

Gij̄ is real and, up to terms subleading in volume, satisfies Gij̄∂j̄K = 2τi. At large volume

only the leading part of Gij̄ is relevant and the scalar potential becomes

V =
∑

i

8(aiAi)
2√τi

3Vλiα
e−2aiτi −

∑

i

4
aiAi

V2
W0τie

−aiτi +
3ξW 2

0

4V3
. (2.13)

The minus sign in the second term arises from setting the bi axion to its minimum. There

are terms not included in (2.13), but these are subleading. Importantly, they only depend

on τi through the overall volume. This is crucial and ensures that at large τi the variation

of the potential with τi is exponentially suppressed. We can find the global minimum by

extremising (2.13) with respect to τi. Doing this at fixed V, we obtain

(aiAi)e
−aiτi =

3αλiW0

2V
(1 − aiτi)

(1
2 − 2aiτi)

√
τi. (2.14)

If we approximate aiτi À 1 (which is valid at large volume as aiτi ∼ ln(V)), then substitut-

ing this into the potential (2.13) contributes
−3λiW 2

0

2V3 τ
3/2
i,minα, which can be reexpressed as

−3λiW
2

0
α

2V3a
3/2

i

(lnV−ci)
3/2, where ci = ln(3αλiW0

2aiAi
). At large values of lnV, the resulting potential

for the volume once all τi fields are minimised is

V =
−3W 2

0

2V3

(

n
∑

i=2

[

λiα

a
3/2
i

]

(lnV)3/2 − ξ

2

)

. (2.15)

This is the reason why the volume may be exponentially large. It is necessary to add an

uplift term to ensure that the minimum is essentially Minkowksi. For concreteness we use

IASD fluxes3 and write the volume potential as

V =
−3W 2

0

2V3

(

n
∑

i=2

[

λiα

a
3/2
i

]

(lnV)3/2 − ξ

2

)

+
γW 2

0

V2
, (2.16)

3These are pure supergravity and so it is manifest that the uplift only depends on the volume with no

unwanted dependence on τi.
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Figure 1: Inflationary potential: the inflaton lies along the x-direction and the volume along the

y-direction.

where γ ∼ O( 1
V
) parametrises the magnitude of the uplift. By tuning γ, the potential (2.16)

(and by extension its full form (2.13)) has a Minkowski or small de Sitter minimum.

To obtain inflation we consider the potential away from the minimum. We take a

‘small’ modulus, say τn, as the inflaton and displace it far from its minimum. At constant

volume the potential is exponentially flat along this direction, and the modulus rolls back

in an inflationary fashion. There is no problem in terms of initial conditions. While we

do not know how the moduli evolution starts, we do know how it must end, namely with

all moduli at their minima. Given this - we have nothing new to say on the overshoot

problem [25] - inflation occurs as the last Kähler modulus rolls down to its minimum.

It is necessary that all other moduli, and in particular the volume, are stable during

inflation. Displacing τn from its minimum nullifies the contribution made by the stabilised

τn to the volume potential. The effective volume potential during inflation is then

V =
−3W 2

0

2V3

(

n−1
∑

i=2

[

λiα

a
3/2
i

]

(lnV)3/2 − ξ

2

)

+
γW 2

0

V2
, (2.17)

Provided that the ratio

ρ ≡ λn

a
3/2
n

:

n
∑

i=2

λi

a
3/2
i

(2.18)

is sufficiently small4, there is little difference between (2.16) and (2.17) and the volume

modulus will be stable during inflation. As we obviously require ρ < 1, it follows that

at least three Kähler moduli are necessary. While (2.18) can always be satisfied by an

appropriate choice of ai, this becomes easier and easier with more Kähler moduli.

We illustrate the form of the resulting inflationary potential in figure 1, showing the

inflaton and volume directions.

4This can be quantified in explicit models. For large volumes the condition on the ratio ρ is that

9.5(ln V)ρ < 1. As long as we restrict to reasonable values for the ai, this bounds the volume at the

minimum. To obtain inflation with correct density perturbations, the appropriate volumes are O(105
−107),

which can be satisfied using sensible values for λi and ai.
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3. Inflationary potential and parameters

Let us now quantify the resulting potential and compute the inflationary parameters. The

inflationary potential is read off from (2.13) to be

Vinf = V0 −
4τnW0anAne−anτn

V2
, (3.1)

as the double exponential in (2.13) is irrelevant during inflation. During inflation V0 is

constant and can be parametrised as

V0 =
βW 2

0

V3
. (3.2)

( 1
V3 is the scale of the potential during inflation). However, τn is not canonically normalised,

as to leading order in volume

Knn̄ =
3λ

8
√

τnV
. (3.3)

The canonically normalised field is

τ c
n =

√

4λ

3V τ
3

4
n . (3.4)

In terms of τ c
n, the inflationary potential is

V = V0 −
4W0anAn

V2

(

3V
4λ

)2/3

(τ c
n)4/3 exp

[

−an

(

3V
4λ

)2/3

(τ c
n)4/3

]

. (3.5)

This is similar, but not identical, to the textbook potential V = V0(1 − e−τ ). Although

τ c
n is canonically normalised, it has no natural geometric interpretation and for clarity we

shall express the inflationary parameters in terms of τn, the cycle volume.

The slow-roll parameters are defined by

ε =
M2

P

2

(

V ′

V

)2

, (3.6)

η = M2
P

V ′′

V
, (3.7)

ξ = M4
P

V ′V
′′′

V 2
, (3.8)

with the derivatives being with respect to τ c
n. These can be evaluated to give

ε =
32V3

3β2W 2
0

a2
nA2

n

√
τn(1 − anτn)2e−2anτn ,

η = − 4anAnV2

3λ
√

τnβW0

[

(1 − 9anτn + 4(anτn)2)e−anτn
]

, (3.9)

ξ =
−32(anAn)2V4

9β2λ2W 2
0 τn

(1 − anτn)(1 + 11anτn − 30(anτn)2 + 8(anτn)2)e−2anτn .
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Then ξ ¿ ε, η ¿ 1 provided that e−anτn ¿ 1
V2 .

Within the slow-roll approximation, the spectral index and its running are given by

n − 1 = 2η − 6ε + O(ξ), (3.10)

dn

d ln k
= 16εη − 24ε2 − 2ξ. (3.11)

The number of efoldings is given by

Ne =

∫ φ

φend

V

V ′
dφ, (3.12)

which may be expressed as

Ne =
−3βW0λn

16V2anAn

∫ τn

τend
n

eanτn

√
τn(1 − anτn)

dτn. (3.13)

Matching the COBE normalisation for the density fluctuations δH = 1.92 × 10−5 requires

V 3/2

M3
P V ′

= 5.2 × 10−4, (3.14)

where the LHS is evaluated at horizon exit, Ne = 50 − 60 efoldings before the end of

inflation. This condition can be expressed as

(

g4
s

8π

)

3λβ3W 2
0

64
√

τn(1 − anτn)2

(

W0

anAn

)2
e2anτn

V6
= 2.7 × 10−7. (3.15)

We have here included a factor of g4
s

8π that should properly be included as an overall normal-

isation in V - see [14]. The condition (3.14) determines the normalisation of the potential

and in practice we use it as a constraint on the stabilised volume.

Finally, the tensor-to-scalar ratio is

r ∼ 12.4ε. (3.16)

3.1 Footprint of the model

We now want to determine the inflationary predictions for the above model. In the above

model there are various undetermined parameters arising from the detailed microphysics,

such as the threshold correction A or tree-level superpotential W0. In principle, these are

determined by the specific Calabi-Yau with its brane and flux configurations, but they

can be prohibitively difficult to calculate in realistic examples. However, it turns out that

the most important results are independent of these parameters. In particular, solving

equations (3.10) to (3.16) numerically, we find the robust results

η ≈ − 1

Ne
, (3.17)

ε < 10−12, (3.18)

ξ ≈ − 2

N2
e

. (3.19)
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These results are not so surprising given the similarity of the potential to the textbook form

V0(1 − e−τ ). Taking a range of Ne = 50 → 60, we obtain in the slow-roll approximation

0.960 < n < 0.967, (3.20)

−0.0006 <
dn

d ln k
< −0.0008, (3.21)

0 < |r| < 10−10, (3.22)

where the uncertainties above arise principally from the number of e-foldings. If we go

beyond the slow-roll approximation, the expression for n will receive O(ξ) corrections -

these are minimal and can be neglected.

To evaluate the inflationary energy scale, it is convenient to reformulate the COBE

normalisation of density perturbations δH = 1.92 × 10−5 as

V 1/4

ε1/4
= 6.6 × 1016GeV. (3.23)

Unlike the predictions for the spectral index, the required internal volume is parameter-

dependent. For typical values of the microscopic parameters this is found numerically to

take a range of values

105l6s ≤ V ≤ 107l6s , (3.24)

where ls = (2π)
√

α′. As the moduli stabilisation mechanism of [13, 14] naturally generates

exponentially large volumes, there is no difficulty in achieving these values. The range of

ε at horizon exit is 10−13 ≥ ε ≥ 10−15, and thus the inflationary energy scale is rather low,

Vinf ∼ 1013GeV. (3.25)

This implies in particular that tensor perturbations would be unobservable in this model.

There is no practical upper limit on the number of efoldings attainable. This is large-

field inflation and the potential is exponentially flat as the inflaton 4-cycle increases in

volume. A very large number of efoldings is achieved by a very small variation in the

inflaton and barring cancellations we would expect Ne,total À 60 in these models.

In these compactifications, the lightest non-axionic modulus has a mass [14]

M ∼ MP

V3/2
. (3.26)

Thus even at the larger end of volumes M À O(10)TeV and there is no cosmological

moduli problem. As indicated earlier, there is also not a problem with initial conditions

for inflation. Given that the moduli attain their minimum, the inflaton is simply the last

Kähler modulus to roll down to the minimum. We do not need to worry about interference

from the evolution of the other moduli. Once they roll down to the minimum they become

heavy and will rapidly decouple from inflationary dynamics.

We have nothing new to say on the cosmological overshoot problem. It is difficult to see

how progress may be achieved here without an adequate formulation of initial conditions for

the universe. This problem is amplified by the fact that typical Calabi-Yaus have hundreds

of both complex structure and Kähler moduli; it is very difficult to give a well-motivated

choice for the initial values and evolution of so many moduli. (For the possibility that

damping can remove the overshoot problem see [26 – 28]).
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3.2 Additional corrections and extensions

The inflationary mechanism presented here relies on the exponential flatness of the τn

direction at constant volume. This is unbroken by the tree-level Kähler potential, the (α′)3

correction and the uplift term. Let us briefly discuss effects that might spoil this.

Let us first focus on superpotential effects. The nonrenormalisation theorems guarantee

that the Kähler moduli cannot appear perturbatively in W . However, the flatness could

be spoiled if the functions Ai depended polynomially on the Kähler moduli. A term

A(Tj)e
−Ti in the superpotential would lead to an effective polynomial term for Tj once Ti

was stabilised. However, the Ai must be holomorphic in Ti and respect the axion shift

symmetries, and so this polynomial dependence on Ti cannot occur. Indeed, in models for

which the threshold corrections have been computed explicitly, there is no dependence of

the functions Ai on the Kähler moduli [19]. Combined with non-renormalisation results,

this means that the exponential flatness cannot be lifted by superpotential effects.

The other possibility is that the exponential flatness may be lifted by corrections to

the Kähler potential that depend on τn. Considering first bulk terms, both the tree-level

Kähler potential and the O(α′3) correction computed in [18] have the property that their

contribution to the scalar potential is only a function of the volume and has no explicit

dependence on the moduli. These then do not affect the constant volume flatness of the τn

direction. It would be interesting, but difficult, to determine whether this feature extends

beyond the terms so far computed.

There are also open string Kähler corrections such as those recently computed in [19].

Of necessity, this computation is restricted to certain toroidal orientifolds with D3 and D7

branes. The 1-loop corrections determined there are subdominant in the scalar potential

to the O(α′3) corrections, although they give a larger contribution to the Kähler potential.

This counterintuitive result is due to the fact that a Kähler correction

K + δK = −2 ln(V) +
ε

V2/3

only gives in the scalar potential
δV

V
=

O(ε)

V4/3
.

Thus O(V−2/3) corrections to the Kähler potential are in fact subdominant in the scalar

potential to O(V−1) corrections. This result makes the volume stabilisation mechanism

of [13, 14] more robust. For the models for which the string loop computation can be

performed, there is no analogue of the τn blow-up field and so it is unclear whether and in

what fashion these might appear in the 1-loop correction to the Kähler potential. There

are however physical constraints: eK appears in the scalar potential and so must behave

sensibly in the limits of both small and large τn.

There are also field theory loop corrections determined in [20]. These are again subdom-

inant in the scalar potential to the O(α′3) corrections used above for volume stabilisation.

This computation again does not have an analogue of the blow-up modes we have used for

the inflaton.

The upshot is that the exponential flatness of the τn direction is not broken by any

of the known corrections. In general, any correction that can be expressed in terms of

– 9 –
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the overall volume will not alter the exponential flatness of the τn direction. If corrections

existed which did break this exponential flatness, it would be necessary to examine their

form and magnitude - it is not after all necessary that the exponential flatness survive for

all values of τn, but merely for those relevant during the last sixty e-folds.

Finally, we have used an oversimplified form for the Calabi-Yau, picturing it as simply a

combination of a volume cycle and blow-up modes. This is not necessary for the inflationary

mechanism described here. Whilst in (2.8) we assumed h1,1−1 moduli to be blow-ups whose

only nonvanishing triple intersection was with themselves, a single such modulus would

be perfectly adequate as an inflaton. Indeed, even this is not necessary - the minimal

requirement is simply a flat direction, which originates from the no-scale behaviour and is

broken by nonperturbative effects. The condition necessary to ensure the volume is stable

during inflaton will then be a generalisation of (2.18).

4. Discussion

We have presented a general but simple scenario of inflation in string theory that does not

require fine tuning of parameters, applies to a very large class of compactifications and is

predictive at the level that can be ruled out within a few years. This scenario realises large

field inflation in a natural way. The main properties of these models are the existence of

flat directions broken by non-perturbative effects. The flat directions have their origins in

the no-scale property of the Kähler potential and are generic for IIB Kähler moduli, as

is the appearance of instanton-generated nonperturbative superpotentials. The scenario

is embedded in the exponentially large volume compactifications of [13, 14] and requires

h2,1 > h1,1 and h1,1 > 2. This last requirement is necessary to ensure that the volume is

stabilised during inflation.

Notice that the volumes required to obtain inflation, while large, are not extremely

large as the string scale is only a few orders of magnitude below the Planck scale. The

necessary volumes of O(105 −107) in string units can be obtained by natural choices of the

exponential parameters ai (a ∼ 2π
3 in the simplest cases) [14].

Although there are many moduli, the inflationary period reduces to a single-field case.

This is because the inflaton is simply the last modulus to roll down to its minimum, and

once other moduli attain their minimum they rapidly become heavy and decouple from

inflationary dynamics. In principle there are at least two other fields that may have a

nontrivial role during the cosmological evolution. One is the axion partner of the inflaton

field. We have chosen this to sit at the minimum of its oscillatory potential, at least for

the last sixty efolds. This is not a strong assumption - because the inflaton direction is

so flat, there is a lot of time for the axion to relax from a possibly non-zero inital value

to its minimum before the last sixty efolds start. (Remember that depending on initial

conditions the total number of efolds may be many orders of magnitude larger than 60.) It

would nonetheless be interesting to study a multiple field inflation configuration in which

both fields contribute to the density perturbations [29].

There is also a second direction which is extremely flat, corresponding to the axionic

partner of the overall volume modulus. This field is so light, with m ¿ 10−300 GeV [14]
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both during and after inflation, that it will not play a role in the cosmological evolution.

We have considered inflation as occurring at the top of a waterfall, and inflation ending

as the moduli roll down to the waterfall. It may also be interesting to consider the case

where there are multiple waterfalls. By appropriately tuning the uplift we could arrange

that the current vacuum energy corresponds to the top of a waterfall rather than the

bottom. As the field would be slowly rolling this would then correspond to quintessence.

Another open question concerns reheating. Note that unlike brane inflation, in which

reheating is driven by tachyon condensation [6] requiring non-trivial string theory dynamics

to be understood [30], in our case, as in racetrack inflation, reheating is a pure field theory

problem that only requires the study of the matter/inflaton couplings. In this respect, if

the standard model lies on D7 branes wrapping the four-cycle whose size is determined by

the inflaton field, the inflaton can decay directly to the gauge fields of the standard model

through the coupling τnFµνFµν . This can give rise to efficient reheating as discussed in

e.g. [31]. If the standard model lies elsewhere, the inflaton will couple to standard model

fields through higher dimension operators and a more detailed analysis is required. (For a

recent analysis of reheating in brane-antibrane inflation see [32]).

It is worth comparing aspects of this mechanism with other inflationary models ob-

tained from string theory. Besides the issue of fine tuning, it differs from racetrack inflation

and tachyon driven inflation in that it corresponds to large field rather than hill-top infla-

tion. In principle our scenario is closer to brane separation inflation, but we do not need

a second field to end inflation and in particular do not predict the existence of remnant

cosmic strings from the reheating era. Numerically, our predictions are close to racetrack

inflation although with the spectral index within a more comfortable range. The expo-

nentially flat direction resembles the mechanism of [8], with the advantage that moduli

stabilisation is now derived and not assumed.

In our scenario inflation is driven by the Kähler moduli and we have discussed the

stabilisation of the complex structure moduli. This is because these are stabilised by fluxes

and all we have needed here is that we can solve DφW = 0 for complex structure moduli φ.

This is possible for generic choices of fluxes as shown by Douglas and collaborators [33, 34].

These statistical results are only applicable to the stabilisation of complex structure moduli

(as it is these to which the discretuum of fluxes couple). The stabilisation of the volume

at the large values necessary for this scenario occurs naturally and dynamically using the

mechansim of [13, 14].

Let us finally discuss the generality of our scenario. The main technical assumption

we have used is the direct expression for the volume in terms of the Kähler moduli (2.8).

This was overkill - the only part of the assumption we actually used was that the inflaton

modulus appears alone in the volume as V = . . . − (Tn + T̄n)
3

2 . As indicated above, we

can relax even this: the absolute minimal requirement is simply the existence of a flat

direction broken by nonperturbative effects. There may be several possible inflationary

directions — in the above model, τ2, . . . , τn are all good candidates — with the particular

one chosen determined by which Kähler modulus is last to attain its minimum. In each

case we expect similar physics to emerge with a robust prediction on the spectral index of

density perturbations. It is very exciting that such a simple string scenario has the basic
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properties needed for a realisation of cosmological inflation with predictions that can be

confirmed or ruled out in the near future.
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